La energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otro modo, energía de movimiento. Si el martillo golpea sobre un clavo incrustado en madera dura e incapaz por tanto de moverse, el clavo seguirá ganando energía, pero en forma de calor.
Albert Einstein demostró en su teoría de la relatividad que la masa cabía contemplarla como una forma de energía (y el invento de la bomba atómica probó que estaba en lo cierto). Al añadir energía a un cuerpo, esa energía puede aparecer por tanto en la forma de masa, o bien en otra serie de formas.
En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña, que sería imposible medirla. Fue en el siglo XX, con la observación de partículas subatómicas que se movían a velocidades de decenas de miles de kilómetros por segundo, cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 kilómetros por segundo respecto a nosotros mostraría una masa dos veces mayor que en reposo (siempre respecto a nosotros).
La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:
en forma de velocidad, con lo cual aumenta la rapidez del movimiento, y
en forma de masa, con lo cual se hace “más pesado”.
La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).
Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora en forma de velocidad: el cuerpo se mueve más aprisa sin sufrir apenas ningún cambio de masa.
A medida que aumenta la velocidad del cuerpo (y suponiendo que se sigue inyectando constantemente energía) es cada vez menos la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida notamos que gana masa a un ritmo ligeramente mayor.
Al aumentar aún más la velocidad y acercarse a los 299.793 kilómetros por segundo, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero ahora es la masa la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida aparece en forma de masa adicional.
El cuerpo no puede sobrepasar la velocidad de la luz, porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentará ni un ápice.
Todo esto no es “pura teoría”. Los científicos han observado con todo cuidado durante años las partículas subatómicas. En los rayos cósmicos hay partículas de energía increíblemente alta, pero por mucho que aumenta su masa, la velocidad nunca llega a la de la luz en el vacío. La masa y la velocidad de las partículas subatómicas son exactamente como predice la teoría de la relatividad, y la velocidad de la luz es una velocidad máxima como una cuestión de hecho, no en virtud de simples especulaciones.
Las explicaciones anteriores no dejaron sentada del todo la cuestión, sino que plantearon dudas e incitaron a muchos a formular por carta nuevas preguntas. Algunos preguntaban: “¿Por qué se convierte la energía en masa y no en velocidad?” o “¿Por qué se propaga la luz a 299.793 kilómetros por segundo y no a otra velocidad?”
Hoy por hoy, la única respuesta posible a esas preguntas es: “Porque así es el universo”.
Otros preguntaban: “¿Cómo aumenta la masa?” Esto ya es más fácil. No es que aumente el número de átomos, que sigue siendo el mismo, sino que es la masa de cada átomo (en realidad de cada partícula dentro del átomo) la que aumenta.
Hubo quienes preguntaron si no sería posible aumentar los recursos terrestres a base de mover la materia muy deprisa, doblando así su masa. De ese modo tendríamos justamente el doble.
No es cierto. El aumento de masa no es “real”. Es una cuestión de medida. La velocidad sólo adquiere significado como medida relativa a algo: a la persona que efectúa la medida, pongamos por caso. Lo único que cuenta es la medición. Ni tú ni yo podemos medir materia que se mueve más deprisa que la luz.
Pero supón que te agarras a esa materia que acabas de comprobar que tiene el doble de su masa normal y que la quieres utilizar para un fin determinado. Al moverte junto con ella, su velocidad con respecto a ti es cero y de pronto su masa es otra vez la normal.
Si pasas como un relámpago al lado de tu amigo a una velocidad próxima a la de la luz, verías que su masa es enorme y él vería igual de enorme la tuya. Tanto tú corno él pensaríais que vuestra propia masa era normal.
Preguntaréis: “¿Pero cuál de los dos ha aumentado realmente de masa?” La respuesta es: “Depende de quién haga la medida”. No hay “realmente” que valga; las cosas son tal como son medidas con respecto a algo y por alguien. De ahí el nombre de teoría de la “relatividad”.
Nosotros pensamos que estamos cabeza arriba y que los australianos están cabeza abajo. Los australianos piensan lo mismo pero al revés. ¿Cuál de las dos visiones es “realmente” la correcta? Ninguna de las dos. No hay “realmente” que valga. Depende de en qué punto de la Tierra nos encontremos. Todo es relativo.
Hubo también lectores que preguntaron: “Si la masa aumenta con la velocidad, ¿no se haría cero cuando el objeto estuviera absolutamente quieto?” Pero es que no hay el “absolutamente quieto”. Sólo hay “reposo relativo”. Una cosa puede estar en reposo en relación con otra. Cuando un objeto está en reposo en relación con la persona que efectúa la medida, posee una cierta masa mínima denominada “masa en reposo”. La masa no puede ser menor que eso.
A velocidades relativas grandes no sólo aumenta la masa de un objeto, sino que disminuye también la longitud del mismo en la dirección del movimiento y se retrasa el paso del tiempo por dicho objeto.
Y si preguntamos que por qué, la respuesta es: “Porque si no fuese así, la velocidad de la luz no sería la velocidad máxima para la materia.”
Las partículas que se mueven más deprisa que la luz emiten radiación luminosa. ¿Cómo es posible, si no hay nada que se propague más deprisa que la luz?
A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes según el medio en que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.793 kilómetros por segundo. Éste es el límite último de velocidades.
Por consiguiente, para ser precisos habría que decir que las partículas no pueden moverse “más deprisa que la velocidad de la luz en el vacío”.
Cuando la luz se mueve a través de un medio transparente, siempre lo hace más despacio que en el vacío, y en algunos casos mucho más despacio. Cuanto más despacio se mueva en un medio dado, tanto mayor es el ángulo con que se dobla (refracta) al entrar en ese medio desde el vacío y con un ángulo oblicuo. La magnitud de ese doblamiento viene definida por lo que se denomina el “índice de refracción”.
Si dividimos la velocidad de la luz en el vacío por el índice de refracción de un medio dado, lo que obtenemos es la velocidad de la luz en dicho medio. El índice de refracción del aire, a la presión y temperatura normales, es aproximadamente 1,0003, de modo que la velocidad de la luz en el aire es 299.793 dividido por 1,0003 ó 299.703 kilómetros por segundo. Es decir, 90 kilómetros por segundo menos que la velocidad de la luz en el vacío.
El índice de refracción del agua es 1,33, del vidrio corriente 1,7 y del diamante 2,42. Esto significa que la luz se mueve a 225.408 kilómetros por segundo por el agua, a 176.349 kilómetros por segundo por el vidrio y a sólo 123.881 kilómetros por segundo por el diamante.
Las partículas no pueden moverse a más de 299.793 kilómetros por segundo, pero desde luego sí a 257.500 kilómetros por segundo, pongamos por caso, incluso en el agua. En ese momento están moviéndose por el agua a una velocidad mayor que la de la luz en el agua. Es más, las partículas pueden moverse más deprisa que la luz en cualquier medio excepto el vacío.
Las partículas que se mueven más deprisa que la luz en un determinado medio distinto del vacío emiten una luz azul que van dejando tras de sí como si fuese una cola. El ángulo que forman los lados de esta cola con la dirección de la partícula depende de la diferencia entre la velocidad de la partícula y la de la luz en ese medio.
El primero que observó esta luz azul emitida por las partículas más veloces que la luz fue un físico ruso llamado Pavel A. Cerenkov, que anunció el fenómeno en 1934. Esa luz se denomina, por tanto, “radiación de Cerenkov”. En 1937, otros dos físicos rusos, Eya M. Frank e Igor Y. Tamm, explicaron la existencia de esta luz, relacionándola con las velocidades relativas de la partícula y de la luz en el medio que se tratara. Como resultado de ello, los tres recibieron en 1958 el Premio Nóbel de Física.
Para detectar dicha radiación y medir su intensidad y la dirección con que se emite se han diseñado instrumentos especiales, llamados “contadores de Cerenkov”.
Los contadores de Cerenkov son muy útiles porque sólo son activados por partículas muy rápidas y porque el ángulo de emisión de la luz permite calcular fácilmente su velocidad. Los rayos cósmicos muy energéticos se mueven a una velocidad tan próxima a la de la luz en el vacío, que producen radiación de Cerenkov incluso en el aire.
Los taquiones, partículas hipotéticas que sólo se pueden mover más de prisa que la luz en el vacío, dejarían un brevísimo relámpago de radiación de Cerenkov incluso en el vacío. Las esperanzas que tienen los físicos de probar la existencia real de los taquiones se cifran en detectar precisamente esa radiación de Cerenkov (suponiendo que existan, claro está).
Extraido del libro: "Cien preguntas básicas sobre la ciencia" de Isaac Asimov
Sobre la consciencia y el libre albedrío
-
Recojo aquí un breve hilo que he publicado en X-twitter y que no quisiera
perder.
1/5
En una charla reciente en Bilbao, @uhandrea nos contaba que pensa...
Hace 7 meses
No hay comentarios:
Publicar un comentario